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Abstract. The increasing sophistication used in the fabrication of semiconductor nanostructures
and in the experiments performed on them requires more sophisticated theoretical techniques than
previously employed. The philosophy behind the author’s exact envelope function representation
method is clarified and contrasted with that of the conventional method. The significance of globally
slowly varying envelope functions is explained. The difference between the envelope functions
that appear in the author’s envelope function representation and conventional envelope functions is
highlighted and some erroneous statements made in the literature on the scope of envelope function
methods are corrected. A perceived conflict between the standard effective mass Hamiltonian
and the uncertainty principle is resolved demonstrating the limited usefulness of this principle in
determining effective Hamiltonians. A simple example showing how to obtain correct operator
ordering in electronic valence band Hamiltonians is worked out in detailed tutorial style. It is shown
how the use of out of zone solutions to the author’s approximate envelope function equations plays
an essential role in their mathematically rigorous solution. In particular, a demonstration is given
of the calculation of an approximate wavefunction for an electronic state in a one dimensional
nanostructure with abrupt interfaces and disparate crystals using out of zone solutions alone. The
author’s work on the interband dipole matrix element for slowly varying envelope functions is
extended to envelope functions without restriction. Exact envelope function equations are derived
for multicomponent fields to emphasize that the author’s method is a general one for converting
a microscopic description to a mesoscopic one, applicable to linear partial differential equations
with piecewise or approximately piecewise periodic coefficients. As an example, the method is
applied to the derivation of approximate envelope function equations from the Maxwell equations
for photonic nanostructures.

1. Introduction

The physics of nanostructures is a prominent part of modern semiconductor physics and the
computation of electronic states, both excited as well as ground states, in such structures
plays an important role in the interpretation of experiment. In an ideal world, all experiments
would be interpreted using the results ofab initio solutions of the many electron Schrödinger
equation. But, at present, approximate calculations of even the one electron Green function
using the GW approximation for the self-energy (see e.g. Hedin and Lundqvist 1969, Stolz
1974) are computationally intensive and are focused on bulk crystals, surfaces and clusters
(see e.g. Rohlfinget al 1998, Rohlfing and Louie 1998a, Aryasetiawan and Gunnarson 1998).
The computational effort needed to calculate the two particle Green function via the solution
of the Bethe–Salpeter equation is even greater, though its solution for GaAs and LiF bulk
crystals has just been accomplished (Rohlfing and Louie 1998b). Clearly, any approach,
such as the use of envelope function methods, to reduce the computational burden of similar
calculations for nanostructures is highly desirable. With the advent, two to three decades
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ago, of superlattices and quantum wells (Esaki and Tsu 1969, Dingleet al 1974), even semi-
empirical calculations (pseudopotential, tight-binding etc see e.g. Smith and Mailhiot 1990)
were hardly practical and then only became so for the specialist theoretician. In the meantime,
workers in the field had to resort to ‘particle in a box’ effective mass type methods as a rough
and ready alternative for simple systems such as GaAs/GaAlAs quantum wells (type I), but a
more sophisticated approach was needed in such systems as InAs/GaSb superlattices (type II).
To meet this need, Bastard (1981) introduced a prescriptive envelope function method, in
which the real space equations satisfied by the envelope functions were equivalent to thek · p
bandstructure eigenvalue problem in bulk crystals (see e.g. Kane 1975), but the band edges
were allowed to be functions of position; it was implicitly assumed that the equations would
be valid at any atomically abrupt interfaces. The justification for this approach was reasonable
agreement with the results of semi-empirical tight-binding calculations, though problems were
encountered subsequently with the comparison not being as direct as one would like in some
cases (see e.g. Changet al1985). The method has certainly been popular because, for the most
part, it gives reasonable agreement with experiment for the systems of common interest, any
lack of accuracy being balanced by the ease of use. It also has the advantage over microscopic
methods of giving results that are easy to interpret: the output gives the envelope functions, the
slowly varying mesoscopic parts of the wavefunction, rather than the complete wavefunction
which contains the rapidly varying Bloch functions. One can also readily understand the
physical significance of the input parameters.

Having obtained reasonable agreement with experiment one might suppose that all is
well with the Bastard approach (Bastard 1988, Bastardet al 1991). However, there are
two major objections to this view. The first is the practical one: if the justification for the
method is agreement with microscopic calculations, then, in reality, the method is essentially
a sophisticated interpolation tool, very useful though it is. One cannot use it with confidence
outside the regime for which it has already been tested. This means that it has limited predictive
power. Indeed, when interface effects (Aleiner and Ivchenko 1992, Ivchenkoet al1993, Krebs
and Voisin 1996, Krebset al1998) were seen experimentally, the equations had to be modified
in an ad hocway to obtain agreement with experiment, because the earlier equations had
implicitly ignored the physics involved in contrast to the fundamental approach introduced by
the present author (Burt 1988a), which can readily encompass such phenomena (Foreman
1998a). And with an empirical theory such as Bastard introduced, what does one do if
one cannot obtain agreement with experiment? Is it the method that is wrong or is one’s
characterization of the nanostructure inadequate or in error? The second major objection
is a philosophical one: the scientific method involves a reductionist approach striving to
understand all experimental phenomena using the smallest number of postulates. The envelope
function method as introduced by Bastard implicitly ignores this approach; it postulates the
envelope function equations rather than deriving them from the more fundamental microscopic
Schr̈odinger equation.

At about the same time and in the years following Bastard’s original paper a number of
attempts were made to justify the application of this envelope function method and variations
thereof to quantum wells. Prominent and most cogent among these early attempts were those
of White and Sham (1981), Altarelli (1983a–c) and Pötz et al (1985). While the arguments
in these papers made the validity of the envelope function equations proposed very plausible,
they did not offer ways of estimating the errors involved nor a systematic method of deriving
more accurate equations. These issues are discussed in Burt (1988a, 1992) and, in particular,
the weakness of the prevalent assumption that the zone centre Bloch functions in the well and
barrier crystals can be assumed to be the same was highlighted in Burt (1992). To overcome
these problems the author introduced (Burt 1988a) a method for deriving exact envelope
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function equations starting from the Schrödinger equation. Using reasonable approximations
this led to a systematic derivation of the effective mass equation including the multiband case
(Burt 1988a, b, 1992) for nanostructures incorporating atomically abrupt heterojunctions.

Despite these advances and a numerical demonstration (Burt 1994a) in which the author’s
effective mass theory is shown to be capable of generating the correct wavefunction in the
presence of abrupt heterojunctions, there seems to be a widespread belief that this envelope
function method is bedevilled with limitations and problems such as not being valid for abrupt
heterojunctions (Wood and Zunger 1996); being incapable of tackling interface mediated
intervalley couplings (Edwards and Inkson 1994, Wanget al 1997); containing ambiguities
arising from the presence of ‘out of zone’ solutions (Godfrey and Malik 1996) and supposedly
using the restrictive assumption that the Bloch functions are the same in the component
crystals (von Allmen 1992). One of the purposes of this paper is to correct these and other
misconceptions. Indeed, an example will be given of a calculation of the wavefunction by
an envelope function method for a superlattice with abrupt heterojunctions, using out of zone
solutions alone; this superlattice has disparate potentials—form factors differing by almost a
factor of 2 with respect to normal semiconductor heterostructures—and significantly different
zone centre Bloch functions for the well and barrier crystals.

The basis of the author’s approach to electron states in nanostructures (Burt 1988a, 1992)
has been the use of an envelope functionrepresentationrather than using envelope functions
in the form of trial solutions. The envelope function expansion used, for the most part, is
indeed just that introduced by Luttinger and Kohn (1955), but the emphasis in its application
is very different. Firstly, exact rather than approximate equations for the envelope functions
are derived. Secondly, rather than focus on ‘gentle’ perturbations to periodic structures, the
focus for systematic approximations is on states which have envelope functions that have
plane wave expansions dominated by small wavevector (crystal momentum) components. As
demonstrated by the author (Burt 1994a, b), and contrary to popular belief, this does not mean
that the envelope functions have to be smooth everywhere: occasional kinks and discontinuities
are permissible. Foreman (1996) has coined the phrase ‘globally slowly varying’ to describe
such envelope functions.

Why should focusing on ‘globally slowly varying’ envelope functions be appropriate? It
may seem that such a restriction is just a consequence of wishful thinking. However, there
is good reason for concentrating on such envelope functions. If one views a nanostructure
as a perturbation on some bulk reference crystal, then the largest matrix elements occur
between unperturbed states separated by small wavevectors (crystal momenta), a characteristic
of piecewise periodic perturbations. Because small wavevector separation usually means small
energy separation, the effect of these dominant matrix elements is all the more pronounced. So
there is usually a tendency for the plane wave expansion coefficients of the envelope functions
plotted against wavevector to be concentrated in the region around the wavevector(s) of the
unperturbed state of the bulk reference crystal and states of similar energy in other parts of
the Brillouin zone. (For bound states of a quantum well, for instance, the unperturbed state
is not a single Bloch state of the unperturbed bulk crystal, but a combination of such Bloch
states). This is particularly true of states near a band edge, because the energy separation for
a given wavevector difference is usually smaller there than in the middle of a band; a good
demonstration of this is seen in the numerical work of Williamsonet al (1998). So one can
understand why focusing on ‘globally slowly varying’ envelope functions is not nearly as
restrictive as one might suppose.

The main theme of this paper is to show how the exact envelope function method and
approximations based on ‘globally slowly varying’ envelope functions can resolve problems
that arise in applying envelope function techniques and greatly expand the scope of such
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techniques not only to electronic states, but to photonic nanostructures as well. Foreman
(1995) has also successfully applied similar techniques to phonons (see also Ridley 1997).

In the next section the main features of the author’s use of envelope function representations
and its relation to more conventional envelope function methods is discussed, and some
erroneous and misleading statements in the literature corrected. In the following section
(section 3) we show how we can resolve an apparent conflict between the results of envelope
function theory and the uncertainty principle demonstrating the limited usefulness of this
principle in determining effective Hamiltonians. In section 4, we turn to the problem of the
correct ordering of the differential operators in valence band Hamiltonians. Since this has been
done formally in an earlier paper (Burt 1992), the approach here is distinctly didactic, to help
anyone interested in doing their own calculations understand the issues involved and to provide
simple to follow rules to construct correct Hamiltonians. We move on in section 5 to discuss
the ‘out of zone’ solution conundrum and show how such solutions do have a role to play in
a complete theory and give a practical demonstration of the construction of thewavefunction
from out of zone solutions of properly derived approximate envelope functions equations. The
correct evaluation of the interband dipole matrix element is a difficult issue in envelope function
theory with erroneous expressions given in both textbooks and research papers implying that
the dipole matrix element must always be of the order of atomic dimensions. This issue was
addressed by the author (Burt 1993, 1995a, b) for globally slowly varying envelope functions,
but in section 6 the basic results are extended to arbitrary envelope functions. The following
two sections (7 and 8) before the summary, in section 9, are devoted to discussing, in general
terms, the extension of the author’s envelope function method to photonic nanostructures.
Firstly, we build on previous work (Burt 1989) on electron states with spin–orbit interaction and
strained structures, which highlighted the applicability of the author’s method to nonscalar wave
equations generally, to derive exact envelope function equations for multicomponent fields.
This is followed by the application of these equations to the source free Maxwell equations
for photonic nanostructures and bringing out the analogy with the traditional derivation of
macroscopic Maxwell equations from their microscopic counterparts.

2. Representation and misrepresentation

The envelope function method developed by the author is based on a plane wave expansion of
the wavefunction (spin is omitted in this discussion to avoid unnecessarily complex notation,
but this is treated in Burt (1989))

ψ(r) =
∑
kG

ψ̃(k +G) exp(i(k +G)r) =
∑
kG

ψ̃G(k) exp(i(k +G)r) (2.1)

where theG are reciprocal lattice vectors of an underlying Bravais lattice and thek are
wavevectors confined to a primitive cell of the reciprocal lattice usually taken as the first
Brillouin zone. ψ̃(k +G) is the Fourier transform ofψ andψ̃G(k) is an alternative notation
that emphasizes the decomposition of the wavevector,k +G, into a reciprocal lattice vector
and a wavevector in the above mentioned primitive cell. A complete set of functions,Un(r),
periodic in the Bravais lattice, is introduced

Un(r) =
∑
G

UnG exp(iG · r) (2.2)

usually chosen to be orthonormal so that expressing the plane waves in terms of them is
straightforward

exp(iG · r) =
∑
n

UnG
∗Un(r). (2.3)
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Substitution for exp(iG · r) from (3) into (1) gives

ψ(r) =
∑
n

Fn(r)Un(r) (2.4)

with the envelope functions,Fn(r), given by

Fn(r) =
∑
kG

UnG
∗ψ̃(k +G) exp(ik · r) =

∑
kG

UnG
∗ψ̃G(k) exp(ik · r). (2.5)

As mentioned in Burt (1989), it is possible to extend this derivation of the envelope function
expansion to include cases in which the basis functionsUn(r) all change by the same phase
factor, exp(iK · a), other than unity, on translation by a Bravais lattice vector,a. All this
requires is for an overall factor exp(iK · r) to be inserted into the definition ofUn(r) which is
equivalent to displacing all reciprocal lattice vectors byK and the summation overk remaining
unchanged. Such definitions would be useful in problems in which, for instance, zone edge
rather than zone centre states dominate.

Now, the envelope function expansion (2.4) is as complete as the original plane wave
expansion by construction. It can therefore deal with any problem which can be solved by a
plane wave expansion. So contrary to the claims made by Wanget al (1997) the method can
include such effects as0X coupling in GaAs/AlAs structures. It is true that the expansion (2.4)
does not make the0X coupling manifest, but the way to make it manifest has been outlined
in Burt (1992) and worked out in detail by Foreman (1998a).

The expansion (2.4) was used by Luttinger and Kohn (1955) to derive effective mass
equations for periodic structures in the presence of a ‘gentle’ perturbing potential. It has
consequently become known as the effective mass representation (see e.g. Callaway 1991)
and there is a widespread impression that this precludes its use in structures with abrupt
heterojunctions (see Wood and Zunger (1996) and Yi and Razeghi (1997) for some recent
examples) despite demonstrations to the contrary (see Burt 1994a, b) and perhaps heightened
by an unnecessary and unrealistic focus by some authors on graded structures (Geller and
Kohn 1993, Geller 1997). The author prefers to call this representation the envelope function,
or perhaps in the light of the discussion below, an envelope function representation to try to
redress the misleading impression of the term effective mass representation.

In (2.3) we have expanded the Bravais lattice periodic plane waves, exp(iG · r), in terms
of just one set of orthonormal functionsUn(r) independent of the wavevectork, but there is
no need to do so. For eachk value one could introduce a different set of complete orthonormal
functions,Un(r,k), and end up with envelope functions

Fn(r) =
∑
kG

UnG(k)
∗ψ̃G(k) exp(ik · r) (2.6)

with the wavefunction being given by

ψ(r) =
∑
n

∑
kG

UnG(k)
∗ψ̃G(k) exp(ik · r)Un(r,k). (2.7)

For the special case in which the orthonormal functionsUn(r,k) are just the Bloch functions
of a single reference crystal, the envelope functions so defined are the Wannier–Slater envelope
functions (Wannier 1937, Slater 1949) and an exact equation can be derived for them (Burt
1992). With a minor modification, the unperturbed energy operatorE(0)n (−i∇) in (9.7) of Burt
(1992) is no longer diagonal, the equation also covers the case in which a different reference
crystal may be used to generateUn(r,k) at eachk value. Indeed, one can go one stage
further and use any set of periodic functionsUn(r,k) at eachk value, including functions that
correspond to more than one reference crystal, provided the set is not over-complete. One then
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arrives at the real space version of the linear combination of bulk bands method of Wanget al
(1997).

Returning to the envelope function expansion (2.4), it is important to appreciate that the
envelope functions,Fn(r), so defined are abona fiderepresentation of the state,|ψ〉, on an equal
footing, in the first instance, with any other representation such as the coordinate representation,
ψ(r), itself. As discussed elsewhere (Burt 1992), there is no need to restrict the application
of (2.4) to stationary states. Contrast this with the conventional envelope function expansion
(see e.g. Altarelli 1983a, b, c)

ψ(r) =
∑
n

fn(r)Un(r) (2.8)

in which the envelope functions,fn(r), are defined so thatψ(r) is the solution of the stationary
Schr̈odinger equation for a particular crystal perhaps in the presence of an external potential.
(TheUn(r) are usually defined to be the zone centre eigenfunctions for the crystal in question.)
For flat band cases, thefn(r)will be a combination of propagating and evanescent plane waves
and will obey a set of coupled local differential equations. The plane wave expansion offn(r)

will not be restricted, in general, to plane waves with wavevectors inside the first Brillouin
zone in contrast to theFn(r) defined by (2.5). SoFn(r) andfn(r) are not the same functions
even if the sameUn(r) are used in their definition and thefn(r) are constructed solely from
‘in zone’ solutions (see the example at the end of this section) though there are situations in
which they differ little (Burt 1994b). TheFn(r) obey nonlocal rather than local equations.
Further discussion on the relation betweenFn(r) andfn(r) can be found in section 9 of Burt
(1988a) and in Foreman (1998b).

It is perhaps worth looking at a simple extreme example of an envelope function
representation to illustrate how envelope functions can differ greatly from the original functions
they represent. Consider the case of a delta function,δ(x), at the origin. Let the reference
Bravais lattice have perioda and apply periodic boundary conditions over a large length
L = Na. The Fourier transform̃δG(k) is

δ̃G(k) =
∫

dx

L
δ(x) exp(i(k +G)x) = 1

L
. (2.9)

Using the plane waves exp(iGx) as the periodic basis functions, we find that the envelope
functions,FG(x), are given by

FG(x) =
∑
k

δ̃G(k) exp(ikx) = 1

L

∑
k

exp(ikx) = sin(πx/a)

πx
. (2.10)

It would now appear that we have a very poor representation of the delta function, displaying
all the Gibbs oscillations effects one would expect for a truncated plane wave expansion. But
the representation is accurate since there is not just one envelope function representing the
delta function, but infinitely many: anFG(x) for each and everyG. We recover the original
delta function precisely on evaluating the envelope function expansion:∑
G

FG(x) exp(iGx) =
∑
G

sin(πx/a)

πx
exp(iGx) = sin(πx/a)

πx
a
∑
n

δ(x − na) = δ(x).

(2.11)

So we see that the representation is exact even though each envelope function appears
inadequate.

In the discussion following equation (2.8) it was noted that the plane wave expansion
of fn(r) will not be restricted, in general, to plane waves with wavevectors inside the first
Brillouin zone. Even if thefn(r) are constructed solely from ‘in zone’ propagating solutions
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this is still true and we can illustrate this using a simple textbook example—the wavefunction
for an electron reflected/transmitted at a simple step. The electron is incident on the step
situated atx = 0 from the left so the wavefunction is

ψ = exp(ik(−)x) + r exp(−ik(−)x) for x < 0 (2.12a)

ψ = t exp(ik(+)x) for x > 0 (2.12b)

wherer andt are the amplitudes for reflection and transmission respectively andk(±), in an
obvious notation, are the wavevectors either side of the step. The Fourier transform of the
wavefunction is given by

ψ̃(q) =
∫
ψ(x) exp(−iqx) dx = i

[
1

q − k(−) +
r

q + k(−)
− t

q − k(+)
]
. (2.13)

Now consider the envelope function representation of this function using the ‘empty lattice’
with lattice perioda so, as in the case of the delta function treated above, our periodic basis
functions are the plane waves exp(iGx) with exp(iGa) = 1. Even if k(±) both lie in the
first Brillouin zone i.e.k(±) < G/2, ψ̃(q) is nonzero outside the first Brillouin zone and, in
principle, needs more than one term in an envelope function expansion to represent it. So, even
if one is using ‘in zone’ propagating Bloch waves one should not confuse the exponentials
associated with them with the envelope functionsFn(r).

3. Use of the uncertainty principle

Hagston et al (1994) have claimed that the use of the ‘kinetic energy’ operator
T = −(h̄2/2)(d/dx)(1/m∗)(d/dx) is in conflict with the uncertainty principle. They point
out that, if all other parameters are kept constant, the energy of the ground state tends to zero
as the effective mass in the barrier tends to infinity. Zero energy would seem to imply zero
uncertainty,1p, in the momentum. Since the electron is confined to the well and there is no
penetration of the barrier, we expect the uncertainty,1x, in position to be less than, or in the
order of, the well width and therefore finite. This leads to a zero1x1p product in the limit of
large barrier mass and hence a contradiction with the uncertainty principle. This suggests that
the author’s derivations (Burt 1988a, b, 1992, 1994a) of this Hamiltonian are in error. Indeed,
the author was at one time (Burt 1989) misled by this argument into believing that the validity
of his then current derivation of the effective mass equation had much more limited validity
than subsequently turned out to be the case. We shall see, however, that the above mentioned
argument is not a valid objection.

It is easy to provide what appears to be a resolution of this conflict by claiming that one
should apply the uncertainty principle to the uncertainties evaluated using the wavefunction
rather than to the envelope function. Then the zero energy state is seen to have a nonzero
value, in general, for1p because of the confinement due to bonding, i.e. we expect1p ∼ h̄/a
wherea is of atomic dimensions. This would lead to a resolution of the conflict except perhaps
in some extreme cases, e.g. strong confinement in narrow quantum wells where the globally
slowly varying envelope assumption, on which the simple effective mass Hamiltonian is based,
would probably not hold for this particular and unusual envelope function or where interface
effects may also be important.

However, the above resolution does not take into account that one can derive the uncertainty
principle for almost any function of physical interest and this includes envelope functions as
well as wavefunctions. All one needs to apply it to an envelope function,f , is the existence
of the norm forf , xf andpf . Since these all exist for the ground state of a single isolated
quantum well, the1x 1p product must obey the uncertainty principle. To demonstrate this
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for a simple case we will evaluate the uncertainties in the limit of large barrier mass,mb.
Take the origin at the centre of the well of width 2l and use the appropriate approximation to
the envelope function:

f =
√

1

2l
coskx |x| 6 l

f =
√

1

2l
exp(−q(x − l)) x > l

f =
√

1

2l
exp(+q(x + l)) x 6 −l

where we have used coskl ≈ 1 and ignored the contribution from the barriers to the
normalization integral becauseq ∝ √mb is large. The energy eigenvalue is given by

k

mw
tankl = q

mb

wheremw is the well mass.
Becauseq ∝ √mb the right-hand side of the transcendental equation tends to zero as

mb →∞ and hencek and the ground state energy also tend to zero.
Since the expectation values of bothx andp are zero, the uncertainties1x and1p are

just given by the square root of the norm of|xf 〉 and|pf 〉 respectively. The contribution to
the norm of|xf 〉 from the barriers vanishes in the limit of large barrier mass, because there is
no appreciable penetration into the barrier. One readily finds

〈x2〉 = 〈xf |xf 〉 = l2

3
.

On the other hand, the contribution to the norm of|pf 〉 i.e. to 〈pf |pf 〉 = h̄2
∫
(df/dx)2 dx

from the well vanishes in the limit of large barrier mass because the envelope function is
constant there. One might suppose, as in the evaluation of the norm of|xf 〉, that there is no
contribution from the barriers because there is vanishing penetration. However, the slope of
the envelope is tending to infinity with the barrier mass and hence we cannot just assume that
the contribution vanishes. Indeed, the contribution from the barriers is easily evaluated to give
〈p2〉 = 〈pf |pf 〉 = h̄2q/2l. Hence our uncertainty product is

1x1p = h̄
√
ql

6
∝ (mb)1/4→∞ asmb →∞

which is not in conflict with the uncertainty principle.
Of course, in the limitmb → ∞, f has a rectangular shape and is discontinuous at the

well–barrier interface; the globally slowly varying envelope function approximation on which
the derivationT = (h̄2/2)(d/dx)(1/m∗)(d/dx) is based still works well, however, for wide
wells as can be seen from the work of Hemmer and Wang (1993). While this robustness of
the globally slowly varying envelope function approximation is satisfying, it is by no means
essential to the above argument. All we are concerned with there is the size of the1x1p

product predicted by the given form ofT to show that no contradiction or conflict with the
uncertainty principle arises.

What this whole exercise brings to the fore is the limited help the uncertainty principle
can afford us in determining effective Hamiltonians. As mentioned above, the principle is
based on minimal assumptions such as the existence of various norms and the Hermiticity of
the operators. It is for this very reason that the principle is so widely applicable. By the same
token, it is very difficult to find an effective Hamiltonian that yields eigenfunctions for which
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the uncertainty principle is violated. If one thinks one has found such a Hamiltonian, then there
is more likely to be a mistake in one’s evaluation of the uncertainties than a genuine violation
of the uncertainty principle. So while any proposed Hamiltonian must not lead to violations
of the uncertainty principle, such a test is only a minimal requirement and unlikely to be very
useful in practice for eliminating putative effective Hamiltonians.

4. Valence band Hamiltonians

The correct way to construct valence band Hamiltonians for inhomogeneous systems from
Luttinger Hamiltonians for the bulk constituents is best illustrated using the simplest of
examples. Consider the Luttinger (1956) Hamiltonian for a zincblende semiconductor in
the absence of spin–orbit interaction where we have excluded the effect of all remote bands
save the lowest conduction band i.e.EV + ak2 − bkxkx −bkxky −bkxkz

−bkykx EV + ak2 − bkyky −bkykz
−bkzkx −bkzky EV + ak2 − bkzkz

 (4.1)

whereEV is the energy of the three degenerate states at the top of the valence band, which
we chose to be real and denote byX, Y andZ. Following Kane (1957) we denote the lowest
conduction band state by iS, whereS is real, as this makes the interband matrix element
p = 〈iS|px |X〉 = 〈iS|py |Y 〉 = 〈iS|pz|Z〉 real. a = h̄2/2m and b = P 2/EG where
P = h̄p/m. This Hamiltonian may be derived easily from the four bandk ·p Hamiltonian by
the Löwdin (1951) perturbation method (see also Heine and Cohen 1970) or put more simply by
the approximate elimination of the small conduction band amplitude in favour of the valence
band amplitudes. However, for the reader unfamiliar with these techniques, it is probably
easier to start afresh with the treatment below which is applicable to both homogeneous and
inhomogeneous systems. Equation (1) can then be verified as a by-product of the wider
consideration of inhomogeneous systems. Anyway, given (1), the problem is how to generalize
it to inhomogeneous structures in which the material parameters, just the coefficientb and the
energyEV in this simple case, are a function of position. Transforming the Hamiltonian (4.1)
for the bulk, homogeneous system case is easy: one just makes the replacementk = −i∇.
But in inhomogeneous systemsb depends on position and there is ambiguity as to how to order
the derivatives andb. The most commonly adopted procedure is to make every element of
(4.1) individually Hermitian by symmetrization (for an early example see Lin-Lui and Sham
1985, for evidence of wide acceptance Bastard 1988, Bastardet al 1991, its continued use
Bockelmann and Bastard 1992, Chao and Chuang 1992, Andoet al 1993 Edwardset al 1994
and for a recent example Bobbertet al 1997), e.g. the element in row 1 column 2 in (4.1),
−bkxky , is replaced by

− 1
2(bkxky + kxkyb) (4.2)

and then the substitutionk = −i∇ is made to obtain

1

2

(
b
∂2

∂x∂y
+

∂2

∂x∂y
b

)
. (4.3)

The unphysical nature of solutions using Hamiltonians derived from this symmetrization
procedure was highlighted by Foreman (1993). For a quantum well structure he showed
that more physically plausible solutions were obtained using the Hamiltonian derived from
first principles by Burt (1992). Meneyet al (1994) demonstrated numerically that the
Hamiltonian derived by Burt (1992) is consistent with the four band ‘k · p’ Hamiltonian
while the symmetrized version was not. The calculations of both Foreman (1993) and
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Meneyet al (1994) were for (001) oriented quantum wells. Stavrinou and van Dalen (1997)
have derived a specific Hamiltonian for (110) oriented quantum wells of zincblende crystals
and performed calculations for GaInAs/InP. They show that there are similar differences
between the results derived from the author’s (Burt 1992) Hamiltonian and those derived
from symmetrized Hamiltonians to those seen for the (001) orientation. van Dalen and
Stavrinou (1998) have also derived Hamiltonians for general directions. Definitive evidence
that the traditional symmetrized Hamiltonian is incorrect has been provided by comparison
between semiempirical pseudopotential calculations and envelope function calculations for
(001) quantum wells (Coles and Stavrinou 1998). The results show strong support for the
author’s Hamiltonian.

To see how the correct (Burt 1992) Hamiltonian is derived for the simple case mentioned
above, start with the four band envelope functionk · p equations,(

EV − E − h̄2

2m
∇2

)
FX − ih̄

m
p
∂FS

∂x
= 0 (4.4a)(

EV − E − h̄2

2m
∇2

)
FY − ih̄

m
p
∂FS

∂y
= 0 (4.4b)(

EV − E − h̄2

2m
∇2

)
FZ − ih̄

m
p
∂FS

∂z
= 0 (4.4c)(

ES − E − h̄2

2m
∇2

)
FS − ih̄

m
p

(
∂FX

∂x
+
∂FY

∂x
+
∂FZ

∂z

)
= 0.

(4.4d)

The wavefunction is given by iFSS + FXX + FYY + FZZ. We will not dwell, in detail, on
the general circumstances in which we are justified in writing down such equations, as this
has been discussed elsewhere (Burt 1992, 1994a, Foreman 1996, Burt and Foreman 1998). If
the reader would like to focus on a simple example, albeit artificial, in which these equations
can undoubtedly be justified, then consider the case of a structure in which all the component
crystals have band structures well described by the nearly free electron limit. In that limit,
the zone centre Bloch functions in any component crystal are the same as in any other: they
are just symmetrized sets of plane waves of equal kinetic energy; for the highest valence
band and lowest conduction band considered here the Bloch functions are symmetrized sets
of (111) plane waves. So, if these nearly free electron or ‘empty lattice’ Bloch functions
are used as a basis, then there will be no off-diagonal terms in the bulk Hamiltonian matrix.
Band gaps will be small, but there is no need for them to be similar and in relative terms they
could vary dramatically so that correct operator ordering is still important. If the resultant
envelope functions are sufficiently slowly varying, then interface terms (see both section 5 and
appendix 4 of Burt 1992) that couple the conduction band envelope,FS , to the valence band
envelopes,FX, FY andFZ, can be neglected. In principle, the interface terms in (4.4a), (4.4b)
and (4.4c) connectingFX,FY andFZ could still be important (Foreman 1998a). But including
them would detract from the clarity of the following and they will be omitted, a step which
can be justified if there is sufficient smoothing of the microscopic potential in the interface
regions. Also, to keep things as simple as possible, neglect thek · p coupling to other bands,
though that coupling to the0c15 band will be treated in the appendix.

For valence band problems, the valence band envelope functions are dominant and one
may eliminateFS from the equations forFX etc. From equation (4.4d) one obtains on putting
ES − E ≈ ES − EV = EG, the bandgap, and dropping the free electron kinetic energy term

FS ≈ ih̄p

mEG

(
∂FX

∂x
+
∂FY

∂y
+
∂FZ

∂z

)
.

(4.5)
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We can use this expression forFS in any of the equations (4.4a), (4.4b) or (4.4c) to obtain(
EV − E − h̄2

2m
∇2

)
FX +

∂

∂x

(
P 2

EG

(
∂FX

∂x
+
∂FY

∂y
+
∂FZ

∂z

))
= 0

(4.6a)

and cyclic permutations (4.6b) and (4.6c). Equations (4.6) correspond to Burt’s (1992) more
general equations.EV andEG can depend on all three position coordinates.

Now suppose for simplicity thatEG depends onz alone, i.e. we are dealing with a (001)
multilayer structure. Then the term

∂

∂x

(
P 2

EG

(
∂FZ

∂z

))
(4.7)

in (4.6a) is asymmetric, but, since it is derived, there is no doubt about its validity. It does not
represent any departure from Hermiticity because there is a corresponding term

∂

∂z

(
P 2

EG

(
∂FX

∂x

))
(4.8)

in the equation (4.6c) for FZ. So this Hamiltonian, which has been derived systematically, is
Hermitian in its entirety as it must be, but the individual differential operators are not.

It is interesting to see the boundary conditions that the equations (4.6) provide. If we
integrate (4.6a) wrt z across an interfacez = const, then one obtains

∂FX

∂z
continuous (4.9a)

(note that no effective mass enters since we have neglected the higher bands that cause the
heavy hole mass to differ from the free electron mass). There is no coupling of this heavy hole
band (heavy, that is, in thez direction) to other bands via the boundary. On the other hand, the
corresponding equation for the light hole envelope function (x → z in (4.6a)) i.e.(

EV − E − h̄2

2m
∇2

)
FZ +

∂

∂z

(
P 2

EG

(
∂FX

∂x
+
∂FY

∂y
+
∂FZ

∂z

))
= 0 (4.6c)

gives the boundary condition as

− h̄
2

2m

∂FZ

∂z
+
P 2

EG

(
∂FX

∂z
+
∂FY

∂y
+
∂FZ

∂z

)
(4.9c)

continuous.
It is, perhaps, not surprising that the boundary affects heavy and light holes differently.

After all, the light holes have underlying p orbitals that are perpendicular to the boundary while
those for heavy holes are parallel to it.

If, incorrectly, we had used the symmetrization procedure, then the boundary condition
for the heavy hole would become

− h̄
2

2m

∂FX

∂z
+
P 2

2EG

∂FZ

∂x
continuous (4.10a)

which introduces a kink into the envelopeFX when (4.9a) demonstrates that no kink should
exist for this case. The corresponding case for the light hole envelope,FZ gives

− h̄
2

2m

∂FZ

∂z
+
P 2

EG

(
1

2

(
∂FX

∂x
+
∂FY

∂y

)
+
∂FZ

∂z

)
continuous (4.10c)

reducing by half the influence of the variation of the heavy hole band envelopes in thex and
y directions.
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Now, in this simple case it has been quite easy to determine the correct ordering of the
differential operators in the Hamiltonian by working from scratch. But for most cases this is a
lengthy procedure and a short cut would be welcome. If we rewrite the equations (4.6) using
k = −i∇, then the corresponding Hamiltonian matrix becomesEV + ak2 − kxbkx −kxbky −kxbkz

−kybkx EV + ak2 − kybky −kybkz
−kzbkx −kzbky EV + ak2 − kzbkz.

 (4.11)

One can see a simple rule emerging. For instance, if we did not make use of the symmetry
condition

p = 〈iS|px |X〉 = 〈iS|py |Y 〉 = 〈iS|pz|Z〉
and thatp is real, then theb = P 2/EG in row X column Y would be (h̄2/m2EG)

〈X|px |iS〉〈iS|py |Y 〉. That thepx comes in the first matrix element means that thekx must
come in front in inhomogeneous systems. That thepy comes in the second matrix element
means that theky must come behind. It is clear that the often used symmetrization procedure
that would give

− 1
2(kxbky + kybkx) (4.12)

is wrong.
The case we have treated is simple, but it is representative of the main points that must

be appreciated to construct valence band Hamiltonians correctly. However, the reader may be
uneasy that the case treated here is too simple because the heavy hole bands ‘bend the wrong
way’. To assuage such uneasiness the work here is extended in the appendix to include the
lowest triplet state in the conduction band which is sufficient to obtain the main features of
the heavy hole band—the correct sign for the curvature and the presence of anisotropy. It will
also be seen that Luttinger parameters have to be resolved into their component parts and that
there is, in principle, a different, though simply understood, ordering for each part.

Finally it should be noted that the possibility of Hamiltonian matrices where the individual
differential operators are not Hermitian has arisen long ago in semiconductor physics. In his
paper on cyclotron resonance in bulk semiconductors Luttinger (1956) explained that magnetic
field effects necessitated such Hamiltonians†.

5. The out of zone solution conundrum

The envelope function method is particularly suited to finding electron states in nanostructures
in which there are no external applied or internal mesoscopic fields and the chemical
composition is piecewise continuous i.e. in so called flat band cases. This is especially true
when the interface terms, which arise even for atomically abrupt heterojunctions (Burt 1988a,
1992 section 5 and appendix 4, Foreman 1998a), can also be neglected because the envelope
functions are sufficiently slowly varying and the band edge is nondegenerate (Burt 1994a).
Whenever one has such flat bands, one can solve the envelope function equations by selecting
an energy, constructing suitable general solutions and finding the energies at which one can
satisfy the boundary conditions. Such methods generate out of zone solutions which at first
appear to be unphysical and it has been argued that they should be rejected (Godfrey and
Malik 1996). However, if the envelope function equations have been derived systematically
and are consequently valid at interfaces, all the solutions, and this includes the out of zone
solutions, are needed to satisfy all the boundary conditions. In this section we will see how the

† My thanks to Dr B A Foreman for drawing my attention to this.
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out of zone solutions arise and show that they are legitimate trial solutions in each flat band
region and need to be retained to obtain a consistent overall solution to the envelope function
equations for the whole structure. Under certain circumstances, as will be shown, the solution
will lead to useful approximate energies and wavefunctions. A numerical example to support
the author’s earlier assertion (Burt 1992) that all such out of zone solutions should be retained
in a consistent solution to the envelope function equations has already been given including
the successful approximate generation of the wavefunction (Burt 1998). At the end of this
section we will demonstrate the calculation of an approximate wavefunction from out of zone
solutions alone.

To see how the out of zone solutions arise and to appreciate their role in the overall solution
of the envelope function equations, it is helpful to follow the author’s procedure (Burt 1994a)
for deriving approximate envelope function equations directly from the Schrödinger equation
in the plane wave representation. The wavefunction is expanded in plane waves

ψ(r) =
∑
kG

ψ̃G(k) ei(k+G)·r (5.1)

where the wavevector has been expressed ask +G,G being a reciprocal lattice vector of the
underlying Bravais lattice andk is inside a Brillouin zone defined with respect to that lattice.
(Cyclic boundary conditions are applied to a large macroscopic volume completely enclosing
the nanostructure.) The Schrödinger equation in this representation is

h̄2

2m
(k +G)2ψ̃G(k) +

∑
k′G′
〈k +G|V |k′ +G′〉ψ̃G′(k′) = Eψ̃G(k) (5.2)

whereV is the microscopic potential which is assumed to be local. (This is not essential for all
that follows, but is in keeping with the numerical example given at the end of the section.) By
taking a Fourier transform of this equation wrt to bothk andk′ one would obtain the author’s
exact envelope function equations, including nonlocality, with the plane waves exp(iG · r) as
the periodic basis functions. Now consider a modified form of (5.2)

h̄2

2m
(q +G)2φ̃G(q) +

∑
q′G′
〈q +G|V |q′ +G′〉φ̃G′(q′) = E′φ̃G(q) (5.3)

in which the wavevectorq ranges over all values both inside and outside the Brillouin zone.
The matrix element〈q +G|V |q′ +G′〉 is defined for fixedG andG′ by Ṽ (q − q′ +G−G′)
whereṼ is the Fourier transform of the potentialV (r).

We note that ifφ̃G(q) is a solution, then so is

φ̃
(n)
G (q) = φ̃G+Gn

(q −Gn) (5.4)

with envelope functions

φ
(n)
G (r) =

∑
q

φ̃
(n)
G (q) exp(iq · r). (5.5)

Now, if the φ̃G(q) are only appreciable forq ≈ 0 i.e. we have a globally slowly varying
function, thenφ̃(n)G will only be appreciable forq ≈ Gn and the envelope functions,φ(n)G (r),
will be rapidly varying and be denoted as out of zone solutions even though the associated
function in real space,φ(n)(r), is, in fact, identical toφ(r) = ∑qG φ̃G(q) exp(i(q +G) · r)
the analogue ofψ(r). For,

φ(n)(r) =
∑
qG

φ̃
(n)
G (q) exp(i(q +G) · r) =

∑
qG

φ̃G+Gn
(q −Gn) exp(i(q +G) · r)

=
∑
qG

φ̃G(q) exp(i(q +G) · r) = φ(r). (5.6)
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So we see that these out of zone envelope function solutions,φ
(n)
G (r), just represent replicas

of the original solution,φ(r), to the corresponding real space equation.
On the basis of the present discussion alone, there is no reason to believe that the functions

φ(r) will be good approximations to the wavefunctions,ψ(r), or that their eigenvaluesE and
E′ will coincide because there is interzone coupling in equation (3) which is not present in (2).
The matrix element〈q +G|V |q′ +G′〉 = Ṽ (q − q′ +G−G′) will generally be appreciable,
that is we have interzone coupling, whenq andq′ are in different zones and will only be small
whenq − q′ +G−G′ is sufficiently large.

Now there are situations for which the above mentioned interzone coupling may be small.
Suppose one constructs a Brillouin zone in the form of a parallelepiped centred on the origin
of the reciprocal lattice. If the primitive reciprocal lattice vectors are denoted byG1, G2

andG3, then a wavevectork can be expressed ask1G1 + k2G2 + k3G3 and will be in this
Brillouin zone if− 1

2 < ki 6 +1
2 for all three components. We will say it is in the ‘inner

region’ of the Brillouin zone if− 1
4 < ki 6 +1

4 for all three components and in the ‘outer
region’ otherwise. Suppose we are only interested in wavefunctions for whichψ̃G(k) is zero
for k within the ‘outer region’ of the Brillouin zone. Then the expectation value for the RHS
of (5.2) will only involve wavevectorsk andk′ such thatk − k′ is within the Brillouin zone.
Suppose, further, that we were to truncate the matrix element〈k +G|V |k′ +G′〉 for fixedG
andG′ so that it is zero whenk−k′ is outside the Brillouin zone and consequently the matrix
element〈q + G|V |q′ + G′〉 for fixedG andG′ would only be nonzero ifq − q′ is within
the Brillouin zone. Then both̃ψG(k) and the expectation value,E, of the energy given by
(5.2) would be unchanged and̃ψG(k) would also be a solution of (5.3) as would the replicas
ψ̃G+Gn

(k −Gn) and the eigenvaluesE andE′ would coincide. The truncation of the matrix
element〈k + G|V |k′ + G′〉 looks severe at first since there is no reason to suppose that it
will always be small whenk − k′ is outside the Brillouin zone. However, whenψ(r) is
globally slowly varying, we have seen (Burt 1994a) that it is reasonable to neglect terms in
〈k +G|V |k′ +G′〉 with large wavevector denominators as a first approximation and we will
denote the matrix element so approximated as〈k +G|V |k′ +G′〉swd, the suffix denoting that
only terms with small wavevector denominators have been retained. Equation (5.2) in this
approximation is

h̄2

2m
(k +G)2ψ̃G(k)swd +

∑
k′G′
〈k +G|V |k′ +G′〉swdψ̃G′(k

′)swd= Eswdψ̃G(k)swd (5.7)

whereEswd is the approximate energy and thẽψG(k)swd are the plane wave expansion
coefficients of the approximate wavefunction. This approximation is equivalent to ignoring
all interface terms.〈k +G|V |k′ +G′〉swd becomes small fork−k′ outside the Brillouin zone,
so we may anticipate that the solutions of the analogue of (5.3,) i.e.

h̄2

2m
(q +G)2φ̃G(q)swd +

∑
q′G′
〈q +G|V |q′ +G′〉swdφ̃G′(q

′)swd= E′swdφ̃G(q)swd (5.8)

will be close to those of (5.7), which in turn are close to those of (5.2) and we can work with
envelope functions regardless of whether or not they are slowly varying. In the above we have
been careful to distinguish between the eigenvaluesE, E′, Eswd andE′swd. It is the implicit
assumption thatE andE′swd are identical that invalidates the claim of Karavaev and Krivorotov
(1996) to have shown that the real space version of (5.8) is an exact equation for envelope
functions. However,E andE′swd may well be close in many cases.

As an example of the use of out of zone solutions in solving envelope function equations
consider the one dimensional superlattice model used previously (Burt 1992, 1994a). The
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matrix elements,〈k +G|V |k′ +G′〉, of the microscopic potential fork 6= k′ are given by

〈k +G|V |k′ +G′〉 = 2 sin((k − k′)LB/2)
∑
G′′

V
(B)
G′′ − V (W)G′′

(k − k′ +G−G′ −G′′)L (5.9)

and for smallk andk′ can be approximated by

〈k +G|V |k′ +G′〉swd= 2 sin((k − k′)LB/2)
(k − k′)L (V

(B)
G−G′ − V (W)G−G′). (5.10)

One arrives at (5.10) by ignoring all terms withG′′ 6= G−G′ in the sum on the RHS of (5.9) i.e.
all the terms with large wavevector denominators. The matrix element〈k +G|V |k′ +G′〉 can
be written asṼ (k− k′ +G−G′)where theṼ (q) are the plane wave expansion coefficients (or
Fourier transform) of the microscopic potential. In figure 1, the matrix element〈k+G|V |k′+G′〉
is given exactly and in the approximation (5.10) forG = G′. We see that the approximation is
remarkably good and is even better forG 6= G′ (not shown). This is remarkable considering
the large change, approaching a factor of 2, in form factors between well and barrier.

Figure 1. Plot of 〈k + G|V |k′ + G〉 againstk − k′ in units of 2π/L whereL is the superlattice
period (L = 20a wherea is the Bravais lattice period). The data points span the first Brillouin
zone. The dark squares, which are joined by solid lines, give the values of the exact expression,
(5.9), which forG = G′ is 2 sin((k − k′)LB/2)

∑
G′′ (V

(B)

G′′ − V (W)G′′ ) /((k − k′ −G′′)L). The light
squares, which are joined by dotted lines, give the values of the approximate expression, (5.10),
which forG = G′ is [2 sin((k − k′)LB/2)/(k − k′)L] (V (B)0 − V (W)0 ), in which terms with large
wavevector denominators are ignored.

When the terms with the large wavevector denominators in the matrix element
〈k +G|V |k′ +G′〉 are ignored i.e.〈k + G|V |k′ + G′〉 is replaced by〈k + G|V |k′ + G′〉swd

the approximate envelope function equations (Burt 1994a, 1998) derived from (5.8) may be
written

− h̄
2

2m

d2Fn

dx2
− i

h̄

m

∑
n′
pn,n′

dFn′

dx
+
∑
n′
Hn,n′Fn′ = E′swdFn (5.11)
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where theHnn′(x) are the matrix elements of the periodic crystal Hamiltonian of the material at
x. Hnn′(x)will be piecewise constant and depend only on the bulk properties of the crystals of
which the superlattice is composed. One cannot solve this set of equations consistently (Burt
1992, 1998) unless one uses the out of zone solutions. However, it is clear that continuation of
the approximation (5.10) for the matrix element ofV beyond the Brillouin zone will produce
little interzone coupling. Hence we should be able to use the out of zone solutions of (5.11)
in the well and barrier layers with confidence. As explained in Burt (1992), the boundary
conditions demand continuity of bothFn and dFn/dx for all bands and as a consequence the
continuity of the wavefunction and its derivative are assured in this approximation. When these
boundary conditions along with all the out of zone solutions are used for the state modelled
in Burt (1992, 1994a) it has been found (Burt 1998) that the solution of (5.11) gives the
wavefunction with remarkable accuracy. The out of zone solutions that do not give a good
description of the band structure are present but with small amplitude; the mathematics has
taken care of everything.

However, the analysis given above would suggest that one should be able to retrieve the
complete wavefunction from solutions restricted to only one Brillouin zone and this need not
be the conventional Brillouin zone centred onG = 0. Indeed, we will show explicitly that
this can be done for a state in the lowest conduction subband of the model mentioned above.
We consider the state corresponding to the superlattice wavevector 0.25(2π/L), i.e. the state
halfway between the zone centre and the zone edge. We solve the equations (5.11) and then
project out those parts of the solution in each layer that have real part of their wavevectors in
the zone centred aboutG = +2π/a wherea is the period of the Bravais lattice (5.86 Å). After
normalizing the wavefunction we obtain the plot in figure 2. On this scale the approximate

Figure 2. Approximate wavefunction for the 10×10 superlattice model obtained from the envelope
function equations (5.11) and by projection out onto the subspace of solutions with real part of the
wavevector in the zone centred onG = +2π/a. The real (imaginary) part is denoted by the solid
(dashed) curve.
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wavefunction is indistinguishable from that derived directly from diagonalizing the plane
wave Hamiltonian. Therefore in figure 3 the plot of the absolute error in the approximate
wavefunction depicted in figure 2 is given. Note that the scale in figure 3 is 10 times larger
than in figure 2 so that one sees the approximation is very good.

Figure 3. Error in the approximate wavefunction plotted in figure 2. Note that the scale on the
vertical axis is ten times larger than in figure 2.

In the matching problem all the out of zone solutions were used including oscillatory
solutions with large wavevector in the barrier. The amplitude of such oscillatory solutions
turned out to be small and consequently they did not cause a problem. Godfrey and Malik (1996)
point out that such oscillatory trial solutions are unrenormalizable for an isolated quantum well.
Imposing cyclic boundary conditions on the states of an isolated quantum well, i.e. regarding
the quantum well as part of a large period superlattice, allows one to retain these otherwise
unrenormalizable trial solutions in the barrier and gets round the problem. Of course, the
whole procedure of using out of zone solutions, in general, depends on a justification such
as small interzone coupling discussed earlier in the section and a sufficiently large envelope
function expansion to give a good description of the wavefunction.

6. Interband dipole matrix element

The evaluation of interband dipole matrix elements needs great care especially so when using
the envelope function representation (Burt 1993). It seems to be widely believed that the dipole
matrix element for an allowed interband transition is of atomic dimensions and is given by the
matrix element of the position operator essentially between the appropriate band edge Bloch
functions (Weisbuch and Vinter 1991, Haug and Koch 1990, Rosencheret al1996). In a series
of papers (Burt 1993, 1995a, b, Coleset al 1998) the author and others have shown how to
take the dipole matrix element correctly and that values much larger than atomic dimensions
are possible for small bandgap semiconductors, though atomic size dipole matrix elements are
obtained by the method in the tight-binding limit, as one would expect with large bandgaps
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(Elliot 1957). The essential point is that the matrix element is not well approximated by using
the dominant term in the envelope function expansion of each wavefunction and, indeed, in
the limit of globally slowly varying envelope functions, this supposedly dominant contribution
is irrelevant. However, it turns out that it is unnecessary to restrict the discussion to globally
slowly varying envelope functions and one can extend the basic results with a zone edge related
correction, usually small, to include all envelope functions. Since, as we have emphasized in
earlier sections, the envelope functions can be viewed as forming abona fiderepresentation
of the wavefunction even when they are not globally slowly varying, it is important to discuss
these stronger results. As all the essential points can be explained for a one dimensional system
we treat this case alone to make the discussion as transparent as possible.

When the wavefunction,ψ , in the interband dipole matrix element,

D(c,v) =
∫ +∞

−∞
ψ(c)(x)∗xψ(v)(x) dx (6.1)

is approximated by just the dominant term in the envelope function expansion, the resulting
integral

Icv =
∫ +∞

−∞
(F (c)c (x)Uc(x))

∗xF (v)v (x)Uv(x) dx (6.2)

is in no way a good approximation toD(c,v) no matter how closelyFU approximatesψ .
In the limit of slowly varying envelope functionsIcv is zero. However, from Luttinger and
Kohn (1955) and also e.g. Callaway (1991), it would appear that a much stronger result is
possible:Icv is zero no matter how rapidly the envelope functions vary (provided their plane
wave expansion is restricted to the Brillouin zone). The result would appear to follow naturally
from Blount’s (1962) treatment, just replacing the wavevector dependent Bloch functions with
their zone centre wavevector independent counterparts. However, Blount (1962) was careful
to include the whole of the wavefunction in his treatment and argued that there would be no
discontinuities in the Fourier transform of the wavefunction under favourable circumstances.
But, if one considers individual terms of the envelope function expansion, one cannot make
this assumption and the more careful analysis below shows thatIcv is not necessarily zero. It
will become clear that whileIcv is not strictly zero, it will often be small.

The more careful analysis proceeds as follows:
First expand the wavefunctions in plane waves

ψ(x) =
∫ +∞

−∞
dqψ̃(q) exp(iqx) (6.3a)

ψ̃(q) = 1

2π

∫ +∞

−∞
ψ(x) exp(−iqx) dx (6.3b)

and substitute into (6.1) forD(c,v).

D(c,v) =
∫ +∞

−∞
dx
∫ +∞

−∞
dq
∫ +∞

−∞
dq ′ψ̃(c)(q)∗ψ̃(v)(q ′)x exp(−i(q − q ′)x)

D(c,v) = i
∫ +∞

−∞
dx
∫ +∞

−∞
dq
∫ +∞

−∞
dq ′ψ̃(c)(q)∗ψ̃(v)(q ′)

∂

∂q
exp(−i(q − q ′)x)

D(c,v) = −2π i
∫ +∞

−∞
dq
∫ +∞

−∞
dq ′

dψ̃(c)(q)∗

dq
ψ̃(v)(q ′)δ(q − q ′)

D(c,v) = −2π i
∫ +∞

−∞
dq

dψ̃(c)(q)∗

dq
ψ̃(v)(q) = 2π i

∫ +∞

−∞
dqψ̃(c)(q)∗

dψ̃(v)(q)

dq
.

(6.4)
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Now in terms of theF̃ (k), the plane wave expansion coefficients of the envelope functions,
F(x),

ψ̃(q) =
∑
n

F̃n(k)Un,G (6.5)

whereq = k +G, k lies in the first Brillouin zone andG is a reciprocal lattice vector. Taking
just the dominant term in (6.5) and using this in (6.4) gives

Icv = −2π i
∫ +∞

−∞
dq

d

dq
(F̃ (c)c (k)Uc,G)

∗F̃ (v)v (k)Uv,G. (6.6)

Now, if we replace differentiation wrtq with differentiation wrtk and integration wrtq with
integration wrtk and summation over the reciprocal lattice vectors,G, then we obtain

Icv = −2π i
∫ +π/a

−π/a
dk

dF̃ (c)c (k)∗

dk
F̃ (v)v (k)

∑
G

Uc,G
∗Uv,G (6.7)

wherea is the lattice period. Of course, so far we have made no specific use that the indices c
and v refer to specific bands so we can write for general bandsn andn′

In,n′ = 2π i
∫ +π/a

−π/a
dkF̃ (n)n (k)∗

dF̃ (n
′)

n′ (k)

dk

∑
G

Un,G
∗Un′,G. (6.8)

For matrix elements ofx for the case of plane wave envelope functions(1/
√

2π) exp(ikx)Un(x)
and(1/

√
2π) exp(ik′x)Un′(x) we obtain

i
d

dk′
δ(k − k′)δn,n′ (6.9)

where we have used the orthonormal property of theU , i.e.∑
G

Un,G
∗Un′,G = δn,n′ . (6.10)

Equation (6.7) immediately leads to the resultIcv = 0 no matter how rapidly the envelope
functions vary and indeed (6.9) would have us believe that all matrix elements ofx between
FU products from different bands will vanish regardless of how quicklyF varies provided
its plane wave expansion is restricted to the first Brillouin zone. The problem with this result
is that it is does not take into account possible discontinuities inF̃

(c)
c (k)Uc,G or F̃ (v)v (k)Uv,G,

regarded as a function ofq, at the zone boundaries. If one applies the argument in going from
(6.6) to (6.7) to the complete wavefunction, then discontinuities at the zone boundaries can
generally be disregarded (Blount 1962), but not here. At each zone boundaryF̃

(c)
c (k)Uc,G will

change fromF (c)c (π/a)Uc,G to F̃ (c)c (−π/a)Uc,G+2π/a. Consequently from (6.6)

Icv = π i
∑
G

{[F̃ (c)c (π/a)Uc,G − F̃ (c)c (−π/a)Uc,G+2π/a]
∗

×[F̃ (v)v (−π/a)Uv,G+2π/a + F̃ (v)v (π/a)Uv,G]} (6.11)

or

Icv = π i

{
F̃ (c)c (π/a)∗F̃ (v)v (−π/a)

∑
G

Uc,G
∗Uv,G+2π/a

−F̃ (c)c (−π/a)∗F̃ (v)v (π/a)
∑
G

Uc,G+2π/a
∗Uv,G

}
. (6.12)

In general we would expect the RHS of (6.12) to be small because it only involves the
F̃ evaluated at the zone edge, but the expression is nonetheless useful for checking and
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understanding numerical results. In an earlier paper (Burt 1995a),Icv was not found to be
zero as (6.9) would suggest it should, even taking into account computational precision, yet
it was much smaller than would be expected if the globally slowly varying envelope function
approximation used in Burt (1993) were really essential to establishIcv ≈ 0. Equation (6.12)
provides a qualitative and potentially quantitative resolution of this puzzle.

Blount (1962) states that one can ignore discontinuities in the Fourier transform of a
functionϕ(x) when taking matrix elements ofx, if, for instance,xϕ(x) is square integrable.
This can be readily seen from the application of Parseval’s theorem to the Fourier transform
pairsxϕ(x) and i dϕ̃(q)/dq i.e.∫ ∣∣∣∣dϕ̃dq

∣∣∣∣2 dq =
∫

dx

2π
x2|ϕ|2. (6.13)

If there were discontinuities iñϕ(q), then d̃ϕ/dq would have delta function singularities, the
square of any of which is not integrable. While many wavefunctions, when multiplied byx,
will be square integrable,FU products may not be.

The result (6.12) can be regarded as a generalization of the textbook result (Stoneham
1975) for taking matrix elements of slowly varying operators between twoFU products.
While the author (Burt 1993) gave a reason for believing that the position operator could be
regarded as slowly varying and demonstrated that this was the case for globally slowly varying
envelope functions, the above shows that the position operator cannot be regarded as slowly
varying in all circumstances and shows how to tackle such cases.

7. Envelope function equations for multicomponent fields

Consider equations of the type∫
d3r′O(r, r′)F (r′) = 0 (7.1)

where the field,F , is a multicomponent quantity. In quantum mechanicsF may be a spinor. In
electromagnetic theory it may represent various components of the electromagnetic fields.O

will them generally be a matrix, 2×2 in the case of electrons with spin–orbit effects included,
6× 6 if (7.1) were to represent the source free Maxwell equations for the curls of the fields in
a combined form. The nonlocality could arise from nonlocal pseudopotentials in solid state
theory or the nonlocal nature of the constitution relations in electromagnetic theory on the
microscopic scale. There is no need to restrict the form of (7.1) to time independent problems.
In quantum mechanics the operatorO could beH − ih̄∂/∂t . O could even be nonlocal in
time such as is required for Maxwell’s equations with dispersion or the equation of motion for
the one electron Green function. To develop envelope function equations we define a Bravais
lattice and introduce plane waves with wavevectorsk +G, withG a reciprocal lattice vector
andk in the first Brillouin zone (which does not have to be the conventional one, see Burt
(1992), but any unit cell in the reciprocal lattice as pointed out in section 2). It is convenient
to write (7.1) using the bra–ket notation∑

k′G′
〈k +G|O|k′ +G′〉〈k′ +G′|F 〉 = 0 (7.2)

where for ease of notationG now also denotes an index,α, labelling rows or columns of
O(r, r′) as well as the relevant reciprocal lattice vector; using the explicit index notation, for
instance, (7.1) would be written∑

α′

∫
d3r′Oαα′(r, r

′)Fα′(r′) = 0. (7.1′)
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We now introduce a similarity transformation,S, to use suitable periodic functions as the basis
rather than the plane waves, exp(iG · r). In application to electrons the transformation is
usually chosen to be unitary because of the simple form ofO and the simple orthogonality
that arises from the Schrödinger equation. However, for applications to electromagnetic fields,
such a simple orthogonality does not usually exist for the modes and a more general similarity
transformation is desirable. The elements of this transformation are writtenSGn where, as in
the convention mentioned above,G also includes the indexα, i.e.SGn is short-hand forSGα,n.
The associated periodic basis ‘functions’,Sn(r), are column vectors with as many rows as
O(r, r′) has columns; for the electron problem they would be spinors, with just two rows. The
individual elements(Sn(r))α of Sn(r) are related to the plane wave basis by

(Sn(r))α =
∑
G

exp(iG · r)SGα,n (7.3)

where, just for this equation,G represents a reciprocal lattice vector alone.
Naturally we have to choseS to be invertible i.e.∑

G

(S−1)nG(S )Gn′ = δnn′ (7.4a)∑
n

(S )Gn(S
−1)nG′ = δGG′ . (7.4b)

We can now write (7.2) as∑
k′

∑
GG′G′′

∑
n′
(S−1)nG〈k +G|O|k′ +G′〉(S )G′n′(S−1)n′G′′ 〈k′ +G′′|F 〉 = 0. (7.5)

Define a new set of basis vectors

|nk〉 =
∑
G

|k +G〉(S )Gn (7.6a)

〈nk| =
∑
G

(S−1)nG〈k +G|. (7.6b)

Note that|nk〉 and〈nk| are not dual vectors as is usual in the notation of quantum mechanics.
This should present no problem if one remembers it is a notational convenience and always
refers to equations (7.6) when evaluating matrix elements.

We can now express (7.5) as∑
n′k′
〈nk|O|n′k′〉〈n′k′|F 〉 = 0 (7.7)

with

〈nk|O|n′k′〉 =
∑
G,G′

(S−1)nG〈k +G|O|k′ +G′〉(S )G′n′ . (7.8)

Using the orthogonality of the plane waves exp(ik · r)∫
d3r

�
exp(i(k − k′) · r) = δk,k′ (7.9)

where� is the normalizing volume over which cyclic boundary conditions have been imposed,
(7.7) can be written as∑

n′

∫
d3r′Onn′(r, r

′)Fn′(r′) = 0 (7.10)
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where

Onn′(r, r
′) = 1

�

∑
kk′

exp(ik · r)〈nk|O|n′k′〉 exp(−ik′ · r′) (7.11)

and

Fn(r) = 1√
�

∑
k

exp(ik · r)〈nk|F 〉 = 1√
�

∑
kG

(S−1)nG exp(ik · r)〈k +G|F 〉. (7.12)

Equation (7.10) is the envelope function form of equation (7.1). The nonlocality in (7.10),
however, is not solely a consequence of the nonlocality in (7.1). Even ifO(r, r′) were a local
operator,Onn′(r, r

′) would be nonlocal, because the range ofk is restricted to the Brillouin
zone. This restriction can be lifted when the plane wave expansion coefficients,〈nk|F 〉, are
zero outside the ‘inner region’ (defined in section 5) of the Brillouin zone. Then the summation
overk andk′ in (7.11) can be extended outside the Brillouin zone to all values. IfO(r, r′)
were local, thenOnn′(r, r

′) would be as well. If, in addition, the〈nk|F 〉 are only appreciably
different from zero for smallk, then one can approximate〈nk|O|n′k′〉 even further such as in
Burt (1994a). It turns out that in the lowest approximationOnn′(r, r

′) is local even ifO(r, r′)
is nonlocal, provided the nonlocality is completely contained in the unit cell such as can occur
in OPW pseudopotential theory when the boundary of the unit cell does not cut through a core
region of any atom.

In this treatment of the envelope function equations we have taken the basis ‘functions’,
Sn(r), to be nominally independent ofk. There is no need to be so restrictive. One can easily
allow theSn(r) to be different for eachk. Usually theSn(r)will be periodic solutions for some
reference crystal, but one could use a different reference crystal for each and everyk. Or one
could go even further and use some complete set of ‘functions’ not related to any particular
reference crystal and again use a different set for each and everyk. Also, in the same way as
pointed out in section 2, one could also use sets of basis functions that all change with a phase
factor, exp(iK · a), different from unity, on translation by a Bravais lattice vector,a. It is just
a matter of displacing all reciprocal lattice vectors,G, byK in the formulas above.

8. Photonic nanostructures

The application of envelope function methods to photonic analogues of semiconductor
nanostructures would appear to be particularly appropriate. The number of plane waves
needed to represent the typical dielectric profile in a unit cell is much larger than that required
for the pseudopotential in a semiconductor. Supercell plane wave calculations then involve
the diagonalization of very large matrices. Envelope function methods offer the possibility
of making such calculations much more manageable. The formal approach is also important.
For the case of electronic nanostructures the requirements of epitaxy force the constituents
to be very similar chemically. As a first approximation, one could neglect the difference
between the zone centre Bloch functions, at least for very small compositional changes
(e.g. GaAs–Ga0.9Al 0.1As). However, for photonic nanostructures there is no requirement
for the component photonic crystals to have similar dielectric profiles, in which case it is all
the more important to have a systematic approach to derive approximate envelope function
equations.

In the previous section we have already given the formal theory needed to derive exact
envelope function equations for any set of linear equations. However, the envelope function
method is only really useful if one can dispense with the nonlocality generated by the finite
extent of the Brillouin zone of the underlying Bravais lattice. So we will assume in this section
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that the envelope functions involved all have a plane wave expansion the coefficients of which
are all zero, or at least sufficiently small to have negligible influence, in the outer region (see
section 5 for the definition of this region) of the Brillouin zone. The specific simplified form
of the Maxwell equations that is most convenient varies widely with the nature of the problem
in hand, so we will treat the general case of the source free Maxwell equations to illustrate the
principles. We will work in the frequency domain which implies that the media are lossless.
Since the derivation of the envelope function equations focuses on the space variables, one
could also carry out the derivation in the time domain so that one could, in principle, include
dissipation. However, working in the time domain introduces extra complexity in the notation
so we will use the simpler frequency domain treatment.

We write the source free Maxwell equations for time variation exp(−iωt) as

∇×E = i
ω

c
µH (8.1)

and

∇ ×H = −i
ω

c
εE (8.2)

whereH has been used to denote
√
µ0/ε0 times the magnetic field and the magnetic

permeabilityµ and the dielectric constantε are 3× 3 matrices. We can write the equations
formally asOF = 0 whereF is a six component field withHx , Hy andHz as the first three
components andEx , Ey andEz as the last three components. Then equations (8.1) and (8.2)
can be combined in the formOF = 0 with

O =
[

i ω
c
µ −∇×
∇× i ω

c
ε

]
. (8.3)

Using the methods of the previous section one arrives at a set of envelope function equations∑
n′
Kn,n′(r)Fn′(r) +

∑
n′
0n,n′Fn′(r) = ω

c

∑
n′
3n,n′(r)Fn′(r). (8.4)

The matrixΛ is given by

3n,n′(r
′) =

∑
GG′
(S−1)nGλGG′(r)(S )G′n′ (8.5)

where the 6× 6 matrixλGG′(r) is

λGG′(r) =
[
µGG′(r) 0

0 εGG′(r)

]
(8.6)

and, for example,

µGG′(r) =
∑
k

µ̃(k +G−G′) exp(ik · r) (8.7)

with µ̃(q) being the Fourier transform ofµ(r). In (8.5)SG′n′ for fixedG′n′ is to be regarded
as a six component column matrix and(S−1)nG for fixedGn as a six component row matrix
so that3n,n′(r) is just a function ofr. Similarly the matrixΓ is given by

0n,n′ =
∑
G

(S−1)nGγG(S )Gn′ (8.8)

whereγG is the 6× 6 matrix

γG =



0 0 0 0 −Gz Gy

0 0 0 Gz 0 −Gx

0 0 0 −Gy Gx 0

0 Gz −Gy 0 0 0

−Gz 0 Gx 0 0 0

Gy −Gx 0 0 0 0


. (8.9)
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And finally, in the same vein, theK matrix is given by

Kn,n′(r) =
∑
G

(S−1)nGκ(r)(S )Gn′ (8.10)

where the 6× 6 matrixκ(r) is

(−i)



0 0 0 0 − ∂
∂z

∂
∂y

0 0 0 ∂
∂z

0 − ∂
∂x

0 0 0 − ∂
∂y

∂
∂x

0

0 ∂
∂z

− ∂
∂y

0 0 0

− ∂
∂z

0 ∂
∂x

0 0 0
∂
∂y

− ∂
∂x

0 0 0 0


. (8.11)

It should be borne in mind that equations (8.1) and (8.2) admit zero frequency solutions which,
in general, have nonzero divergences forD andB. The solutions of interest, of course, are
those with nonzero frequency for which both∇·D and∇·B vanish i.e.D andB are transverse
fields. If one is making a Luttinger–Kohn type envelope function expansion,

∑
n Fn(r)Sn(r),

then it is not permissible, in principle at least, to restrict the summation to include ‘functions’,
Sn(r), that correspond to transverseD andB because the overall envelope function expansion
will not then, in general, correspond to transverseD andB. TheSn(r) with zero frequency
and which haveD andB with nonzero longitudinal components are needed to give a complete
representation of all possible solutions of (8.1) and (8.2) with transverseD andB. This point
is potentially relevant to the application of ‘k · p’ theory to photonic bandstructures (Johnston
et al 1994), though its importance in practice generally remains to be seen.

As an illustrative example of (8.4), consider the case in which bothε andµ (taken as
scalars) and the fields are independent ofz and the only nonvanishing electric field component
is in thez direction. Only the first and second components of (8.1) and the last component of
(8.2) need be considered and if we use plane waves, exp(iG ·r), as the periodic basis functions,
then the envelope function equations are

−i
∂EzG

∂y
+GyEzG = ω

c

∑
G′
µGG′HxG′ (8.12a)

+i
∂EzG

∂x
−GxEzG = ω

c

∑
G′
µGG′HyG′ (8.12b)

−i

(
∂HxG

∂y
− ∂HyG

∂x

)
+ (GyHxG −GxHyG) = ω

c

∑
G′
εGG′EzG′ . (8.12c)

These can be obtained directly from (8.4) by using the unit matrix forS and eliminating the
third, fourth and fifth rows and columns (those referring to variablesHz, Ex andEy).

By using the inverse,(µ−1)GG′ , of µGG′ at each pointr, one can use the expressions for
HxG andHyG obtained from (8.12a) and (8.12b) to substitute for these variables in (8.12c) to
obtain(
∂

∂x
+ iGx

)∑
G′
(µ−1)GG′

(
∂

∂x
+ iG′x

)
EzG′ +

(
∂

∂y
+ iGy

)∑
G′
(µ−1)GG′

(
∂

∂y
+ iG′y

)
EzG′

+

(
ω

c

)2∑
G′
εGG′EzG′ = 0. (8.13)



Envelope function theory for nanostructures R77

Now, (8.13) could have been derived by starting directly from the scalar wave equation

∂

∂x

(
1

µ

∂Ez

∂x

)
+
∂

∂y

(
1

µ

∂Ez

∂y

)
+

(
ω

c

)2

εEz = 0. (8.14)

We would have regained (8.13) but with(1/µ)GG′ rather than the inverse ofµGG′ . The former
is found by taking the Fourier transform of the function 1/µ and then forming(1/µ)GG′ while
in the latter case one takes the Fourier transform ofµ, formsµGG′ and then inverts this matrix.
As one might expect, a closer analysis shows that these two quantities are equivalent when
Fourier components in the outer region (see section 5 for the definition) of the Brillouin zone
can be neglected in bothµ and 1/µ.

To put (8.13) in nontrivial envelope function form one needs to apply a similarity
transformation,S. Since we are now concerned with only one field component,Ez, the
transformation is that between plane waves and periodic functionsSn(r). So in (7.3), the
indexα can be dropped. For nonmagnetic media the envelope function equations become

−
(
∂2

∂x2
+
∂2

∂y2

)
En − 2i

∑
n′

(
P xnn′

∂

∂x
+ P ynn′

∂

∂y

)
En′ +

∑
n′
Tnn′En′ =

(
ω

c

)2∑
n′
εnn′(r)En′

(8.15)

where

En(r) =
∑
G

(S−1)nGEzG(r) (8.16a)

P inn′ =
∑
GG′
(S−1)nGGiSGn′ (8.16b)

Tnn′ =
∑
G

(S−1)nGG
2SGn′ (8.16c)

and

εnn′(r) =
∑
GG′
(S−1)nGεGG′(r)SG′n′ . (8.16d)

Now in the case of envelope function equations for electrons, we invariably use a unitary
transformation forS and chose it to diagonalize the zone centre Hamiltonian in some important
region. In a photonic crystal, rather than a photonic nanostructure, one could chooseS to
simultaneously diagonalize bothT andε, i.e. bothS̃∗TS and S̃∗εS would be diagonal. But
S would not be unitary, in general, and hence neitherTnn′ nor εnn′ as defined in (8.16c) and
(8.16d) would be diagonal. They would, however, form diagonal matrices on premultiplication
by(S̃∗)S. In photonic nanostructures it may turn out that premultiplying (8.15) byS̃∗S is useful
so that bothT andε could be chosen to be diagonal somewhere with the drawback that the
−(∂2/∂x2+∂2/∂y2)En term becomes more complex i.e.−∑n′(S̃

∗S)nn′(∂2/∂x2+∂2/∂y2)En′ .
In the above, we have been working with the macroscopic Maxwell equations and hence

with local ε andµ. We could, however, imagine that we had been starting from microscopic
Maxwell equations and deriving envelope function equations for them. All that is required is to
generalize what we have done to include the case of nonlocalε andµ. This, of course, implies
that our fields are all to be considered as expectation values of the corresponding quantum
mechanical operators and that a linear response has already been established between the
electric displacement and electric field and also the magnetic induction and magnetic field.
This generalization to nonlocalε andµ is not difficult, for instance using the method in Burt
(1994a), if the nonlocality is always contained in a unit cell (though this is not always strictly
necessary) in an analogous way to nonlocal OPW pseudopotentials (see e.g. Heine 1970) with
sufficiently tightly bound core levels; then theεGG′ andµGG′ turn out to be local functions and
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our analysis is directly transferable. In this case, we expect only the field components with
G = 0 to be appreciably different from zero because the periodicity of the Bravais lattice is
less than or of the order of a nanometre and hencecG corresponds to frequencies in the x-ray
region whileω is in the optical region. To illustrate this consider (8.13) for the case of slowly
varying envelopes so that one can neglect the derivatives. For nonmagnetic media one sees
that forG 6= 0

EzG(x, y) ≈ − (ω/c)2

G2
x +G2

y

εG0(x, y)Ez0(x, y) (8.17)

and soEzG is small for frequencies in the optical region. It is clear that (8.4) can take us
from microscopic to the macroscopic regime if we use only plane waves, exp(iG · r), as the
periodic basis functions, consider only theG = 0 equations and neglect all field components
forG 6= 0.

Of course, the derivation of macroscopic Maxwell equations from their microscopic
counterparts goes back to the work of Lorentz (1909) and Rosenfeld (1951) where a coarse
grained averaging was carried out on the microscopic variables, with further developments,
including the article by Russakoff (1970), well summarized by Jackson (1975). An alternative
way (Robinson 1973) of expressing this averaging procedure is to note that the microscopic
equations

∇ · e = ρ

ε0

∇ · b = 0

∇× e = −∂b
∂t

∇× b = µ0

(
j + ε0

∂e

∂t

)
only involve translationally invariant operators, so that the long wavelength components of
the variables, those that correspond to the Fourier transforms of the macroscopic variables,
obey the same equations. Both of these former approaches then assume that the macroscopic
polarization and magnetization are determined only by the macroscopic fields at the same
point. These analyses, however, do not assume that the materials involved are crystalline. The
envelope function approach, though restricted to systems made up of unit cells arranged on
a Bravais lattice, does give us a more formal insight into how the macroscopic constitutive
relations can be local even though the microscopic counterparts are nonlocal:εGG′ andµGG′
and in particularε00 andµ00 turn out to be local operators in real space, at least, if unit cells
can be defined so that the nonlocal aspect of the microscopic constitutive relations can be
restricted to each unit cell, i.e. the polarization, for instance, in one cell is only dependent on
the values of the electric field in the same cell and at the same time the dimensions of the unit
cell are small compared to the wavelength. This dropping out of the nonlocality is not an issue
for the derivation of the normal macroscopic Maxwell equations since there is really only one
wavelength in the problem and that is large compared with atomic sizes. But when one is
considering, say, the propagation of x-rays through a multilayer and near a Bragg condition in
each of the constituent crystals, then elimination of nonlocal effects is not so straightforward
and one would have to fall back on a more sophisticated argument such as that outlined above.

9. Summary

If there is one unifying message to be extracted from the preceding pages, it is the power
of a systematic envelope function method, such as the author has developed, to resolve
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controversies that arise when one has to rely solely on semiempirical methods. What does one
do, for example, if one only has a semiempirical method and it is claimed that the kinetic
energy operator,T = −(h̄2/2)(d/dx)(1/m∗)(d/dx), one is using leads to solutions that
violate the uncertainty principle and therefore must be rejected? If one has an exact envelope
function method and one has derived this form of the kinetic energy operator systematically,
one knows it cannot be generally wrong and one has the motivation and the tools to get to
the root of the problem. Similarly, when constructing valence band Hamiltonians, with a
semiempirical method one just has to guess at the correct form of the Hamiltonian out of
many possible ones. With an exact envelope function theory one can systematically derive
approximate Hamiltonians that would not have been obvious ones to try if one were just
relying on guesswork. Similarly, with the out of zone solution conundrum and the problem
of interband dipole matrix element, the presence of an exact envelope function method based
on an envelope function representation gives one confidence that issues that look intractable
from the semiempirical viewpoint are, indeed, resolvable. In connection with the out of zone
solution problem, we have demonstrated the surprising result that the wavefunction can be
entirely generated by out of zone solutions of the envelope function equations. The fallacy
that just retaining the dominant term in the envelope function expansion for the wavefunction
is sufficient when taking matrix elements of the position operator has been exposed and an
intriguing corollary to this is that, in the limit of wide quantum wells, vanishingly small
components of the wavefunction determine the size of the matrix element.

There are, of course, other messages. The author’s method is a general one, at least for
approximately piecewise periodic systems, for transforming from microscopic to mesoscopic
descriptions and its application to photonic nanostructures has been outlined to emphasize
this point. Indeed, the envelope function method may be particularly appropriate for such
structures since the number of plane waves needed in the expansion of the fields to obtain
an accurate bandstructure for a photonic crystal is much larger than for that required for the
corresponding problem for electrons using pseudopotentials. Direct ‘supercell’ type methods
for calculating modes of photonic nanostructures could be very computationally intensive.

Another important message is the elucidation of the subtle difference between the envelope
functions that appear in the author’s method as part of a representation and those that arise
in heuristic or empirical methods. In the author’s method each envelope function is defined
to have a plane wave expansion that only contains wavevectors in a unit cell, usually the first
Brillouin zone, of a reference reciprocal lattice. On the other hand, the envelope functions
that are introduced in the method of Bastard are defined to be solutions of a given set of
differential equations and have no restriction on their plane wave expansion. Typically, for flat
band conditions, these latter envelope functions are exponentials, but even if for each layer of a
multilayer structure the exponentials have real ‘in zone’ wavevector, these envelope functions
would not be the same as those defined by the author’s envelope function representation, though
in many cases they are similar.

Perhaps the most important message of all concerns the scope of envelope function
methods. Traditionally, they were justified by considering ‘gentle’ perturbations such those
arising from shallow impurities, applied magnetic fields or slowly graded structures. The
author, however, has taken a very different approach to deriving approximate envelope function
equations. The main assumption is that the envelope functions are globally slowly varying and
no explicit assumption about the perturbations is made, though, of course, the globally slowly
varying envelope function assumption puts some implicit restrictions on the perturbations. This
does not automatically rule out structures containing atomically abrupt junctions since the low
lying states for such structures may well have globally slowly varying envelope functions.
The great advantage of the author’s approach is that after the approximate envelope function
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equations have been solved one can check how well the solutions fit the globally slowly
varying criterion and estimate corrections, providing one with a consistent approximation
procedure.

Finally, a parting comment on the resolution of the basic boundary condition problem, one
of the motivations for developing an exact envelope function method in the first place. When
the relevant part of the bandstructure in each of the component crystals of a multilayer structure
is a single parabolic band, does one impose continuity on the derivative of the envelope function
or on the ratio of the derivative to the effective mass at an abrupt heterojunction? In the former
case one has a smooth envelope function, which is consistent with the required absence of
kinks in the wavefunction, but there is an apparent violation of current conservation. In the
latter case one has current conservation, but a kink appears in the envelope function at the
interface, which implies a corresponding kink in the wavefunction. The author’s derivation of
the effective mass equation shows that the effective mass should be included in the derivative
boundary condition, but also shows that the kink in the approximate envelope function arising
from a discontinuous change in effective mass at an abrupt heterojunction just models the
smooth, but relatively rapid, change in derivative of the exact envelope function; there is a
corresponding feature in the exact wavefunction related to the effective mass discontinuity. But
in a delightful twist, smooth matching of the envelope function derivative is also a permissible
procedure, when interface effects are not important, provided one is solving the complete
multiband set of envelope function equations with the inclusion of the out of zone solutions
instead of making the effective mass approximation; in the numerical example presented here,
at least, the effective mass related feature is still present in the approximate wavefunction so
derived.
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Appendix. Inclusion of more remote bands

In section 4, only one remote band, the lowest conduction band, was included in the analysis
and this led to unphysical behaviour i.e. the heavy hole bands bent upwards into the gap. A
more realistic treatment including the lowest015 conduction bands will further illustrate the
rule noted in section 4 on how to obtain correct ordering of the differential operators and
provide a more realistic valence bandstructure.

Denote the zone centre015 conduction band Bloch functions asX′, Y ′ andZ′. The wave
function is now written

iFSS + FXX + FYY + FZZ + FX′X
′ + FY ′Y ′ + FZ′Z′. (A.1)

Equation (4.4a) for FX is now(
EV − E − h̄2

2m
∇2

)
FX − ih̄

m
〈X|px |iS〉∂FS

∂x
− ih̄

m
〈X|py |Z′〉∂FZ

′

∂y

− ih̄

m
〈X|pz|Y ′〉∂FY

′

∂z
= 0. (A.2)
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By symmetry there are no matrix elements of momentum between any pair of the statesX, Y
andZ nor between any pair of the statesX′, Y ′ andZ′. The only nonzero matrix elements
between one ofX, Y andZ and one ofX′, Y ′ andZ′ are〈X|py |Z′〉 and〈X|pz|Y ′〉 and their
cyclic permutations.

We now substitute forFY ′ andFZ′ as well asFS in the equation (A.2) forFX using the
approximate equation (4.5) and corresponding equations forFY ′ andFZ′ ; the equation forFX′
is, by analogy with (A.2),(
EC ′ − E − h̄2

2m
∇2

)
FX′ − ih̄

m
〈X′|px |iS〉∂FS

∂x
− ih̄

m
〈X′|py |Z〉∂FZ

∂y

− ih̄

m
〈X′|pz|Y 〉∂FY

∂z
= 0 (A.3)

from which the corresponding equations forFY ′ andFZ′ can be obtained by cyclic permutation.
EC ′ is the energy of the statesX′, Y ′ andZ′.

We now use the fact that the envelope functionsFX, FY andFZ are dominant, all the
others are small, and that the envelopes are all slowly varying so that we can neglect the free
electron kinetic energy term compared with energy gaps e.g.EC ′ − E ≈ EC ′ − EV = EG′ .

FX′ ≈ ih̄

mEG′

[
〈X′|py |Z〉∂FZ

∂y
+ 〈X′|pz|Y 〉∂FY

∂z

]
. (A.4)

Cyclic permutation will give the corresponding equations forFY ′ andFZ′ . Substitution forFY ′
andFZ′ as well asFS in (A.2) gives(
EV − E − h̄2

2m
∇2

)
FX +

(
h̄

m

)2{
∂

∂x

〈X|px |iS〉〈iS|px |X〉
EG

∂FX

∂x

+
∂

∂x

〈X|px |iS〉〈iS|py |Y 〉
EG

∂FY

∂y
+
∂

∂x

〈X|px |iS〉〈iS|pz|Z〉
EG

∂FZ

∂z

}
+

(
h̄

m

)2{
∂

∂y

〈X|py |Z′〉〈Z′|px |Y 〉
EG′

∂FY

∂x
+
∂

∂y

〈X|py |Z′〉〈Z′|py |X〉
EG′

∂FX

∂y

+
∂

∂z

〈X|pz|Y ′〉〈Y ′|pz|X〉
EG′

∂FX

∂z
+
∂

∂z

〈X|pz|Y ′〉〈Y ′|px |Z〉
EG′

∂FZ

∂z

}
= 0. (A.5)

The first pair of braces contain the terms that originate from coupling to the conduction band
and are exactly the same as calculated previously. The second pair of braces contain the new
terms, those that originate from coupling to the015 conduction band. Symmetry allows us to
write

C1 =
(
h̄

m

)2 〈X|py |Z′〉〈Z′|py |X〉
EG′

=
(
h̄

m

)2 〈X|pz|Y ′〉〈Y ′|pz|X〉
EG′

(A.6a)

and

C2 =
(
h̄

m

)2 〈X|py |Z′〉〈Z′|px |Y 〉
EG′

=
(
h̄

m

)2 〈X|pz|Y ′〉〈Y ′|px |Z〉
EG′

. (A.6b)

So in terms ofk = −i∇ our Hamiltonian with addition of the015 conduction band becomes−kxbkx − kyC1ky − kzC1kz −kxbky − kyC2kx −kxbkz − kzC2kx

−kybkx − kxC2ky −kxC1kx − kybky − kzC1kz −kybkz − kzC2ky

−kzbkx − kxC2kz −kzbky − kyC2kz −kxC1kx − kyC1ky − kzbkz


(A.7)
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where the commonEV +ak2 contribution to each diagonal element, for which operator ordering
is not an issue, has been omitted. We see now that in the off-diagonal elements the different parts
of the Luttinger parameter are treated differently in inhomogeneous systems. For instance, in
the bulk, the element in rowX and columnY of (A.7) would be written as

−(b +C2)kxky.

For the−bkxky term, sincepx comes in the first matrix element ofb = (h̄2/m2EG)〈X|px |iS〉
〈iS|py |Y 〉 and py comes in the second matrix element,kx must come in front ofb in
inhomogeneous systems andky must come behind. On the other hand, for the−C2kxky
term, sincepy comes in the first matrix element ofC2 = (h̄/m)2〈X|py |Z′〉〈Z′|px |Y 〉/EG′
andpx comes in the second matrix element,ky must come in front ofC2 in inhomogeneous
systems andkx must come behind.

References

Aleiner I L and Ivchenko E L 1992JETP Lett.55693
Altarelli M 1983aPhysicaB 117/118747
——1983bPhys. Rev.B 28842
——1983cSpringer Lecture Notes in Physicsvol 177, ed G Landwehr (Berlin: Springer) p 174
Ando H, Nojima S and Kanbe H 1993J. Appl. Phys.746383
Aryasetiawan F and Gunnarson O 1998Rep. Prog. Phys.61237
Bastard G 1981Phys. Rev.B 245693
——1988Wave Mechanics Applied to Semiconductor Heterostructures(Paris: Editions de Physique) p 105
Bastard G, Brum J A and Ferreira R 1991Solid State Physicsvol 44, ed H Ehrenreich and D Turnbull (New York:

Academic) p 229
Blount E I 1962Solid State Physicsvol 13, ed F Seitz and D Turnbull (New York: Academic) p 357
Bobbert P A, Wieldraaijer H, van der Weide R, Kemerink M, Koenraad P M and Wolter J H 1997Phys. Rev.B 56

3664
Bockelmann U and Bastard G 1992Phys. Rev.B 451688
Burt M G 1980J. Phys. C: Solid State Phys.131825
——1988aSemicond. Sci. Technol.3 739
——1988bSemicond. Sci. Technol.3 1224
——1989Bandstructure Engineering in Semiconductor Microstructures (NATO ASI Series B vol 189)ed R A Abram

and M Jaros (New York: Plenum) p 99
——1992J. Phys.: Condens. Matter4 6651
——1993J. Phys.: Condens. Matter5 4091
——1994aPhys. Rev.B 507518
——1994bAppl. Phys. Lett.65717
——1995aSuperlatt. Microstruct.17335
——1995bSemicond. Sci. Technol.10412
——1998Superlatt. Microstruct.23531
Burt M G and Foreman B A 1998Proc. 24th Int. Conf. on the Physics of Semiconductorseds E Cohen and M Heiblum

(Singapore: World Scientific) at press
Burt M G and Inkson J C 1976J. Phys. D: Appl. Phys.9 43
Callaway J 1991Quantum Theory of the Solid State(New York: Academic) p 518
Chang Y C, Schulman J N, Bastard G, Guldner Y and Voos M 1985Phys. Rev.B 312557
Chao C Y and Chuang S L 1992Phys. Rev.B 464110
Coles R A 1998PhD ThesisUniversity of Durham
Coles R A, Brand S, Abram R A and Burt M G 1998Phys. Rev.B, submitted
Coles R A and Stavrinou P 1998 private communication and to be published
Dingle R, Weigmann W and Henry C H 1974Phys. Rev. Lett.33827
Edwards G and Inkson J C 1994Solid State Commun.89595
Edwards G, Valadares E C and Sheard F W 1994Phys. Rev.508493
Elliot R J 1957Phys. Rev.1081384
Esaki L and Tsu R 1969IBM Research NoteRC-2418
Foreman B A 1993Phys. Rev.B 484964



Envelope function theory for nanostructures R83

Foreman B A 1994Phys. Rev.B 491757
——1995Phys. Rev.B 5212 260
——1996Phys. Rev.B 541909
——1998aPhys. Rev. Lett.81425
——1998bPhys. Rev. Lett.803823
Geller M R 1997Phys. Rev. Lett.78110
Geller M R and Kohn W 1993Phys. Rev. Lett.703103
Godfrey M J and Malik A M 1996Phys. Rev.B 5316 504
Hagston W E, Harrison P, Piroek T and Stirner T 1994Superlatt. Microstruct.15199
Haug H and Koch S W 1990Quantum Theory of the Optical and Electronic Properties of Semiconductors(Singapore:

World Scientific)
Hedin L and Lundqvist S 1969Solid State Physicsvol 23 (New York: Academic) p 35
Heine V 1970Solid State Physicsvol 24 (New York: Academic) p 1
Heine V and Cohen M H 1970Solid State Physicsvol 24 (New York: Academic) p 78
Hemmer P C and Wang D T 1993Phys. Rev.B 476603
Ivchenko E L, Kaminskii A Yu and Aleiner I L 1993Sov. Phys.–JETP77609
Jackson J D 1975Classical Electrodynamics(New York: Wiley)
Johnston N F, Hui P M and Luk K H 1994Solid State Commun.90229
Kane E O 1957J. Phys. Chem. Solids1 249
Kane E O 1975Semiconductors and Semimetalsvol 1 (New York: Academic) p 75
Karavaev G F and Krivorotov I N 1996Fiz. Tekh. Poluprovodn.30177 (Engl. transl.Semiconductors30102)
Krebs O, Rondi D, Gentner J L, Goldstein L and Voisin P 1998Phys. Rev. Lett.805770
Krebs O and Voisin P 1996Phys. Rev. Lett.771829
Lin-Li u Y R and Sham L J 1985Phys. Rev.B 325561
Lorentz H A 1909/1952Theory of Electrons(Liepzig/Dover)
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Pötz W, Porod W and Ferry D K 1985Phys. Rev.B 533868
Ridley B K 1997Electrons and Phonons in Semiconductor Multilayers(Cambridge: Cambridge University Press)
Robinson F N H1973Macroscopic Electromagnetism(Oxford: Pergamon)
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